原文来源:mitryulyanov.github、sites.skoltech.ru
作者:Dmitry Ulyanov、Andrea Vedaldi、Victor Lempitsky
「雷克世界」编译:嗯~阿童木呀、哆啦A亮
关于若干图像恢复问题的示例结果。我们使用深度神经网络,但并不使用数据集对其进行训练或预训练。我们将它们用作结构化图像先验。
摘要
深度卷积网络已经成为图像生成和恢复的通用工具。一般来说,它们的出色性能归功于它们从大量样本图像中学习真实图像先验(image prior)的能力。而在本文中,相反的是,我们证明生成器网络的结构足以将大量的低等级图像统计先验捕获到任意学习中。为了做到这一点,我们展示了一个随机初始化的神经网络可以用作一个手动先验,并且可以在诸如去噪、超分辨率和修补等标准可逆问题上获取很好的性能表现。此外,同样的先验可以用来反演深度神经表征从而对其进行诊断,并且可以对基于“闪光—无闪光”输入对的图像进行恢复。