向量Embedding是目前检索增强生成(RAG)应用程序的核心。它们捕获数据对象(如文本,图像等)的语义信息,并以数字数组表示。在时下的生成式AI应用中,这些向量Embedding通常由Embedding模型生成。如何为RAG应用程序选择合适的Embedding模型呢?总体来说,这取决于具体用例以及具体需求。接下来,让我们拆分步骤来分别来看。
2025年08月07日
向量Embedding是目前检索增强生成(RAG)应用程序的核心。它们捕获数据对象(如文本,图像等)的语义信息,并以数字数组表示。在时下的生成式AI应用中,这些向量Embedding通常由Embedding模型生成。如何为RAG应用程序选择合适的Embedding模型呢?总体来说,这取决于具体用例以及具体需求。接下来,让我们拆分步骤来分别来看。